img1
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img2
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img3
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img4
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img5
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

previous arrow
next arrow

Microbial diversity of Gumki cave and their potential role in enzyme production

Rachna Rautela , Seema Rawat, Rashmi Rawat, Pramila Verma,  A.B.Bhatt

Department of Botany and Microbiology, Hemwati Nandan Bahuguna Garhwal University, Srinagar, India 

Abstract

The work presents microbial community structure of Gumki cave for bioactive compound production. This cave represents a unique atmosphere which is totally different from outer atmosphere. Total 49 isolates were recovered from cave samples. Morphological and biochemical characterization revealed a community that contains nine genera of bacteria: Bacillus (27%), Paenibacillus (21%), Staphylococcus (20%), Streptococcus (16%), Salimicrobium (8%), Lysisnibacillus (2%), Aeromonas (2%), Proteus (2%) and Clostridium (2%). All these microbes were screened for different enzyme production and about 90% isolates displayed positive results for these enzymes. 75.51% recovered isolates were lipase producers, 47% were producing amylase and 24% and 12% bacteria produced protease and cellulase, respectively.

Amylase, Bacterial diversity, Cave, Cellulase, lipase, Protease

Bakri, Y., Ammouneh, H., El-Khouri, S., Harba, M. and  Thonart, P., 2012. Isolation and identification of a new Bacillus strain for amylase production. Research in Biotechnology; 3(6): 51-58.

Banerjee, S. and Joshi, S. R., 2013. Insights into cave architecture and the role of bacterial biofilm. Proc Natl Acad Sci India B Biol Sci; 83(3):277–90.

Baskar, S., Baskar, R. L., Mauclaire, L. and  McKenzie, A.  J., 2006. Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India.Curr. Sci. 90(1): 58-64.

Baskar. S., Baskar, R., Lee, N. and Theophilus, P. K., 2009. Speleothem formations of Mawsmai caves and Krem Phyllut caves, Meghalaya, India: Some evidences for biogenic activities, Environ. Earth Sci.57: 1169-1186.

Baskar, S., Baskar, R. and Routh , J., 2014. Speleothems from Sahastradhara Caves in Siwalik Himalaya, India: Possible Biogenic Inputs. Geomicrobiol J. , 31(8): 664-681.

Bhullar,  K., Waglechner,  N., Pawlowski,  A., Koteva,  K., Banks, E.D., 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7(4): e34953. doi:10.1371/journal.pone.0034953.

Cappuccino, J. G and Sherman, N., 2007. In: Microbiology A Laboratory Manual, 7th edition, TATA Art Printers, India.

Chadda,  B.  S., Singh, S., Vohra, G. and Saini, H. S., 1997. Shake culture studies for the production of amylases by Thermomyces languginosus. Acta Microbiologica Immunologica Hungarica. 44: 181-185.

Deshmukh, M. 1994. Influence of geology on the localization of ancient caves, Journal of the Geological Society of India, 44: 13–217.

Diasa, P. V. S., Ramosa, K. O., Padilhab, I. Q. M.,  Araújob, D. A. M., Santosa, S. F. M. and Silvaa, F. L. H., 2014. Optimization of Cellulase Production by Bacillus Sp. Isolated from Sugarcane Cultivated Soil.
Chem. Eng. Trans.38: 277-282.

Dijksterhuis, J., Sanders, M., Gorris,  L. G. M. and Smid, E. J., 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum J.  Appl.  Microbiol.  86: 13-21.

Helbig . J., 2001. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (Isolate 18191). Journal of Phytopathology 149: 265-273.

Ibrahim, S. E., El-Amin, H. B., Hassan, E. N., Sulieman, A. M. E., 2012. Amylase production on solid state fermentation by Bacillus spp. Food Public Health. 2:30–5. doi:10.5923/j.fph.20120201.06

Ladd, J. N. and Butler, J. H. A. 1972. Short- term assay of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrate. Soil Biology and Biochemistry, 4: 19-30.

Latorre, J. D., Hernandez-Velasco, X., Wolfenden, R. E., Vicente, J. L., Wolfenden, A. D., Menconi, A., Bielke, L. R., Hargis, B. M. and Tellez, G. 2016. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Front. Vet. Sci. 3:95. doi: 10.3389/fvets.2016.00095.

Lee, S. D.,  2016. Paenibacillus cavernae sp. nov., isolated from soil of a natural cave. Int J Syst Evol Microbiol, 66: 598–603

Megušar, F. and Sket B., 1977: On the nature of some or­ganic covers on the cave-walls.- Proceedings of the 6th international Congress of Speleology, Academia, 159-161, Olomouc.

Mulec, J., Zalar, P., Hajna, N. Z., and Rupnik, M., 2002. Screening of cultural microorganism from cave environments (Slovenia). Acta Carsologica, 8: 177-187.

Olajuyigbe,  F. M. and  Ajele, J. O., 2005. Production dynamics of extracellular protease from Bacillus species. Afr J Biotechnol, 4:776–9.

Paula, C. C. P. de., Montoya, Q. V., Rodrigues, A., Bichuette, M. E., and Seleghim, M.H.R., 2016. Terrestrial filamentous fungi from Gruta do Cata˜o (Sa˜o Desiderio, Bahia, Northeastern Brazil) show high levels of cellulose degradationJ Caves Karst Stud, 78(3); 208–217.

Shah,  K. R. and  Bhatt,  S. A., 2011. Purification and characterization of lipase from Bacillus subtilis Pa2 . J Biochem Tech, 3:292–5. 30. 

Soares, I.,  Távora, Z., Barcelos, R. P. and  Baroni, S., 2012. Microorganism-Produced Enzymes in the Food Industry, Scientific, Health and Social Aspects of the Food Industry, Dr. Benjamin Valdez (Ed.), ISBN: 978-953-307-916-5.

Teather, R.M. and Wood, P.J., 1982. Use of congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl.Environ. Microbio, 43: 777-780.

Tomova1, I., Lazarkevich, I., Tomova, A., Kambourova, M. and Vasileva-Tonkova, E., 2013. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria. Int J Speleol, 42(1): 65-67.

Yang, J., Kharbanda, P. D. and Mirza, M., 2004. Evaluation of  Paenibacillus polymyxa pkb1 for biocontrol of Pythium disease of cucumber in a hydroponic system. Acta Horticulturae, 635: 59-66.

Yun, Y., Xiang,  X., Wang,  H., Man, B., Gong, L., Liu, Q., Dong Q and  Wang R. 2016. Five-year monitoring of bacterial communities in dripping water from the Heshang cave in Central China: Implication for  paleoclimate reconstruction and ecological functions, . Geomicrobiol J, 33(7): 1-11.

Rautela, R., Rawat, S., Rawat, R., Verma, P., & Bhatt, A. B. (2017). Microbial diversity of Gumki cave and their potential role in enzyme production. Environment Conservation Journal18(3), 115-122.

:https://doi.org/10.36953/ECJ.2017.18315

Received: 05.08.2017

Revised: 02.09.2017 

Accepted: 28.09.2017

First Online: 21.12. 2017

:https://doi.org/10.36953/ECJ.2017.18315

MANUSCRIPT STATISTICS

Publisher Name:  Action for Sustainable Efficacious Development and Awareness (ASEA)

Print : 0972-3099           

Online :2278-5124