Alteration of resting period of pollen of five cultivars of Apocynaceae by mineral (sodium tetraborate): Further Evidence of a Criticism of Brewbaker and Kwack (1963), Sudhakaran (1967-Ph.D.Thesis) and Saoji and Chitaley (1972) – A Critical Review*

S.A. Salgare
Salgare Research Foundation, Maharashtra, India

Abstract
Sodium tetraborate altered the resting period of pollen of 7 series and failed in 2 series of the Apocynaceae.

Keywords:- Palynology, Minerals, Growth regulators

Introduction
Palynology, in recent years has attracted the attention of workers of different disciplines on account of its numerous applications to problems of plant taxonomy, genetics, geology, medical and agricultural sciences. Pollen physiology furnishes the information required for effecting hybridization of plants growing in different geographical and climatic regions with blooms in different seasons.

Materials and Method
Pollen of successive flowers (viz. F, F-24, F-48, F-72 series i.e. open flowers and the flower buds which require 24, 48, 72 hours to open respectively) of 5 cultivars of Apocynaceae e.g. red-, pink- and white-flowered cultivars of Nerium odorum Soland. and pink- and white-flowered cultivars of Catharanthus roseus (L.) G. Don. were collected at the stage of the dehiscence of anthers in the open flowers. Germination of pollen grains of successive flowers was studied by standing-drop technique in the optimum concentrations of sucrose as well as in the optimum concentrations of sucrose supplemented with the optimum concentrations of sodium tetraborate (Table-1). The rate of pollen germination of successive flowers was determined by fixing the cultures at one hour intervals. Such preparations were continued for 10 hours. Observations on the germination of pollen were recorded 24 hours after incubation.

Results and Discussion
Potentiality of pollen germinability was recorded in F series of all the 5 cultivars of the Apocynaceae studied. It was the pollen of F-24 series of red-flowered cultivar of Nerium odorum and both the cultivars of Catharanthus roseus found germinated in the optimum concentrations of sucrose. It should be pointed out that the pollen of F-48 and F-72 series of pink-flowered cultivar of C. roseus showed their germination in the optimum concentrations of sucrose. Thus the potentiality of pollen germinability in Apocynaceae was observed in 10 out of 20 series investigated (Table-1). Germination of pollen of F-72 series of pink-flowered cultivar of Catharanthus roseus in vitro culture of sucrose was noted in the present investigation.
However, Trisa Palathingal (1990-M.Phil.Thesis) failed to germinate the pollen of F-72 series of pink-flowered cultivar of *C. roseus* in Brewbaker and Kwack’s (1963) culture medium. This proves that the culture medium is also having the bearing on the germination of pollen. This also confirms that Brewbaker and Kwack’s (1963) culture medium is not ideal for pollen cultures. This was also pointed out earlier by the author (2006h, o, 07d).

The delay in pollen germination was interpreted by Saoji and Chitaley (1972) as being due to the grains not being mature enough to effect pollination, immediately after being shed from the anther. Further they stated that 4-5 hours are required for the complete maturation of pollen grains. It was Salgare (1983) who pointed out of the first time that the pollen require resting period before germination and it was the failure of Saoji and Chitaley (1972) who misinterpreted the resting period for pollen maturity. Further he(1983) stated that this resting period differs species to species which is also noted in the present investigation (Table-1). This resting period is altered by different chemicals. Present work as well as the extensive work of Salgare(1983, 84, 85, 86b, 2001, 04, 05a-b, d-c), Salgare and Theresa Sebastian (1986), Salgare and Shashi Yadav (2002, 05), Salgare and Sanchita Pathak (2002, 05) and Salgare and Sanju Singh (2006) made it very clear that Saoji and Chitaley’s (1972) arguments are superficial and misleading. Sodium tetraborate altered the resting period of pollen of 7 series and failed in 2 series of the Apocynaceae (Table-1). The mineral extended the resting period of pollen of 6 series. Sodium tetraborate caused maximum extension in the resting period of the pollen of F series of pink-flowered cultivar of *Nerium odorum*. Alteration of resting period of pollen of successive flowers by the minerals was noted by Salgare and Shashi Yadav (2002, 05). Alteration of the resting period of pollen by the herbicides was noted by the author (1983, 84, 85, 86b, 2001, 04, 05a-b, d-c) and Salgare and Theresa Sebastian (1986). Recently Salgare and Sanchita Pathak (2002, 05) and Salgare and Sanju Singh (2006) noted the alteration of resting period of pollen by the heavy metal. Variation of the resting period of pollen of successive flowers of 5 cultivars of *Petunia axillaris* in various sugars was recorded by the author (2007b, a).

Table-1: Effect of sodium tetraborate on the rate of pollen germination of successive flowers of five cultivars of Apocynaceae

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Series</th>
<th>Conc.</th>
<th>% PV</th>
<th>SC</th>
<th>ST</th>
<th>C</th>
<th>T</th>
<th>trfpg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerium odorum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-flowered F</td>
<td>F</td>
<td>91±0.42</td>
<td>50</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-flowered F</td>
<td>F</td>
<td>61±2.87</td>
<td>50</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-flowered F</td>
<td>F</td>
<td>61±3.17</td>
<td>20</td>
<td>05</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-flowered F-24</td>
<td>F-24</td>
<td>61±3.17</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catharanthus roseus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-flowered F</td>
<td>F</td>
<td>89±0.97</td>
<td>20</td>
<td>01</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-flowered F-24</td>
<td>F-24</td>
<td>89±0.97</td>
<td>50</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-flowered F</td>
<td>F</td>
<td>93±0.98</td>
<td>20</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-flowered F-24</td>
<td>F-24</td>
<td>93±0.98</td>
<td>50</td>
<td>01</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-flowered F-48</td>
<td>F-48</td>
<td>93±0.98</td>
<td>50</td>
<td>01</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-flowered F-72</td>
<td>F-72</td>
<td>93±0.98</td>
<td>80</td>
<td>Ng</td>
<td>Ng</td>
<td>N2</td>
<td>N2</td>
<td></td>
</tr>
</tbody>
</table>

C. Inverted sets time required for germination of pollen in optimum concentrations of sucrose; ST: optimum concentration of sodium tetraborate in mg/ml; Conc: optimum concentration of sucrose and sodium tetraborate %; PV: pollen viability; SC: optimum concentration of sucrose in %; Ng and Ng, no germination of pollen even after 10 and 24 hours of sowing respectively; PV: pollen viability; T: time required for germination of pollen in optimum concentrations of sucrose + sodium tetraborate (inverted sets); trfpg, time required for the germination of pollen in control sets and treated sets in hours.

Environment Conservation Journal

(42)
Sudhakaran (1967) stated that in *Vinca rosea* L. [*Catharanthus roseus* (L.) G. Don.] besides pollen grains which produced single pollen tube, it has also been noticed that tetraploid grains frequently produce more than one pollen tube. Pollen tubes are branched quite frequently. Aberrations of this type in the pollen tube development are not observed in diploid pollen tubes, but quite frequently met with the pollen grains of irradiated plants. Salgare (1983, 86a, 2006a-c, e, g-h, j, l-n, 07b-d) made it very clear that Sudhakaran (1967) had failed to trace out the branched pollen tubes and polysiphonous condition which is fairly common even in diploid pollen grains. Apart from this Sudhakaran (1967) was not able to report the various types of pollen tube deformities either with diploid or tetraploid grains. Present findings as well as the previous work of Salgare (1983, 86a, 2006a-c, e, g-h, j, l-n, 07b-d) also proved that Sudhakaran’s (1967) observations are superficial and misleading.

References

Alteration of resting period of pollen

