Isolation and determination of biochemical nature of water soluble anticoagulant from earthworm

Abhishek Mathur², Satish K. Verma², Santosh K. Singh², Archana Prakash³, G.B.K.S. Prasad⁴, V.K. Dua¹

Received: 05.12.2010 Revised: 15.01.2011 Accepted: 15.02.2011

Abstract

Earthworms are commonly known as farmer’s friend. Various previous studies have confirmed the anti-inflammatory, analgesic, antipyretic and anticancer effects of earthworm extract. In the present study selected species of earthworm was used to study the anticoagulative activity of earthworm extract by APTT test. The study involves the extraction and isolation of anticoagulant from earthworm which was found to be in the form of DNA. In order to uncover the biochemical nature of this molecule, the anticoagulant was processed with various hydrolyses such as Proteinase-K, Dnase, Nnase and lysozyme. Simultaneously APTT test and agarose gel electrophoresis were performed to confirm the results. Standard herring sperm DNA and yeast RNA were also used to compare the anticoagulative activities with that of anticoagulant purified from earthworm. Individual components of nucleotide were also checked which might be responsible for the anticoagulative capability.

Keywords: Anticoagulant activity, APTT, DNA, Eudrilus eugeniae, Hydrolases

Introduction

Earthworm has been recognized as an anti-inflammatory, analgesic and antipyretic agent (Noda et al., 1996). It shows antitumourous effect by preventing excess glucose uptake (Nagasawa et al., 1991). It is also implicated in hemostasis by acting either as a fibrinolytic or anticoagulatory agent which results in the facilitation of blood circulation (Wang et al., 1989). Anticoagulation activity was reported by Woo (1996) on an earthworm species Lumbricus rubellus. The earthworm has been suspected to contain proteases which specifically dissolve the fibrin clots or anticoagulant(s) which selectively interfere with the intrinsic pathway of the blood coagulation cascade (Mann et al., 1990; Davie et al., 1991; Leipner et al., 1993; Kim et al., 1995; Woo, 1996). Antimicrobial and Anti-inflammatory activities of earthworm, Eudrilus eugeniae were investigated by Mathur et al. (2010 a and b) Pharmaceutical significance of earthworm Eudrilus eugeniae was also reported by him. Eudrilus eugeniae is an African earthworm specie and is having good reproduction capability. As no work like the present investigation is reported till yet thus we have emphasized our study on this specie. The aim of our study was to investigate the anticoagulant activity from earthworm specie, Eudrilus eugeniae and to determine the biochemical nature of the anticoagulant.

Materials and Method

Collection of material

Adult earthworms were provided by Jai Bharat Nursery, Rani Pokhari, Rishikesh (U.K), India. The worms were washed in order to remove the sand debris and were kept in N-saline for washing the gut. The step was repeated several times until the gut gets thoroughly cleared.

Purification of Anticoagulant

A detailed purification procedure (Woo, 1996) was adopted. The earthworms were homogenized in distilled water in the ratio 1:1 (w/v) followed by heat extraction at 100 °C for 30 minutes after centrifugation, the supernatant was subjected to ammonium sulphate fractionation at final concentration of 80 %. The precipitate was suspended in a minimum volume of 50 mM Tris...
HCl (pH 8.0) and the anticoagulatory activities were measured by Activated partial thromboplastin time (APTT) test.

Activated Partial Thromboplastin time (APTT) test

An *in vitro* coagulation test of APTT was performed according to the manufacturer’s instruction. The data was analyzed in percent coagulation time.

Agarose gel electrophoresis

1% agarose gel was prepared in 1X TAE buffer according to the standard protocol and the sample was loaded along with marker in the wells along with gel loading buffer. The observation of the bands was done under UV-transilluminator.

Treatment of anticoagulant with various hydrolases

The concentrated sample of 50 µl (0.92 mg/ml) was separately incubated with Proteinase-K (2 µg), DNase (5 µg) in the presence of 2mM MgCl₂, Rnase (5 µg) and lysozyme (20 µg) at 37°C overnight in a total volume of 150 µl adjusted with 50mM Tris HCl (pH 8.0). Later on APTT test and agarose gel electrophoresis of the hydrolases digested samples were carried out.

APTT of Standard DNA, RNA and individual components of nucleotide

APTT test was performed according to the manufacturer’s instruction available in the kit. Calf thymus DNA and Yeast RNA were used as positive standards. Pentose sugars (Deoxyribose and Ribose sugars), phosphoric acid nitrogenous bases (purines and pyrimidines) were used for the determination of APTT in order to assess the individual component responsible in anticoagulant activity of DNA.

Results and Discussion

From the present investigation it was revealed that the anticoagulant purified from earthworm extract was in the form of DNA which produced reddish-orange colored bands with ethidium bromide under UV transilluminator. When APTT test was performed of this extracted anticoagulant it showed 76.66% coagulation time (Table-1) with respect to Standard Diagnos Thrombo reagent (available in the kit).

To confirm our studies, when the anticoagulant was treated with various hydrolytic enzymes at 37°C overnight, a diffused band of DNA was observed on treatment with Dnases under UV light, which confirmed our studies that the anticoagulant is in the form of DNA (Fig.1). When such Dnase treated sample was subjected for APTT the anticoagulant activity gets reduced. This decrease in value of APTT might be due to the digestion of anticoagulant (DNA) by Dnases (Table-2).

Table-1: Activated prothrombin thromboplastin time (APTT) of purified anticoagulant from earthworm extract

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Mean values of APTT (seconds)</th>
<th>% Coagulation time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnos Thrombo Reagent</td>
<td>120</td>
<td>130.43</td>
</tr>
<tr>
<td>Earthworm extract</td>
<td>92</td>
<td>76.66</td>
</tr>
</tbody>
</table>

Fig.1: Bands of digested DNA after the treatment of hydrolases. (1, proteinase-k treated; 2, lysozyme treated; 3, Dnase treated; 4, Rnase treated)

Table-2: Activated prothrombin thromboplastin time (APTT) of hydrolases treated purified anticoagulant

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Mean values of APTT(seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnos Thrombo Reagent</td>
<td>Proteinase-k</td>
</tr>
<tr>
<td>Dnase</td>
<td>62</td>
</tr>
<tr>
<td>Earthworm extract</td>
<td>136</td>
</tr>
</tbody>
</table>
Our next question was whether this effect of the DNA was unique for the earthworm, *E. eugeniae*. When herring sperm DNA was used to measure its effect on the coagulation, the APTT value gets reduced viz. 45 seconds (Table-3) which confirmed our findings that anticoagulant (DNA) purified from earthworm, *E. eugeniae* is a potent anticoagulant. When the results of APTT of standard yeast RNA were compared with that of anticoagulant (DNA) purified from earthworm and herring sperm DNA, the coagulum appeared in no time in the plasma treated with RNA sample. Simultaneously no values of APTT were observed in pentose treated plasma sample (Table-3).

It may be due to the fact that single stranded RNA could be more compact than double stranded DNA. We assumed therefore that the effect of anticoagulation was due to negatively charged matrix provided by the extended DNA. If this assumption is valid, the DNA could be compared with heparin in terms of their anticoagulatory mechanisms. It has been already shown that thrombin inhibition by AT-III was accelerated in the presence of heparin since it provides a negatively charged matrix as a template (Ehrlich *et al*., 1991; Nesheim, 1983).

Table-3: Activated prothrombin thromboplastin time of Standard DNA, RNA and components of nucleotide

<table>
<thead>
<tr>
<th>Samples</th>
<th>Mean values of APTT (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herring sperm DNA</td>
<td>45</td>
</tr>
<tr>
<td>Yeast RNA</td>
<td>NA</td>
</tr>
<tr>
<td>Nitrogenous bases</td>
<td>90</td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>36</td>
</tr>
<tr>
<td>Pentose sugar</td>
<td>NA</td>
</tr>
</tbody>
</table>

NA= No activity

We further confirmed that nitrogenous bases present in the DNA are the active components responsible for anticoagulant activity. The mean value of APTT was found to be 90 seconds much higher than that of phosphoric acid viz. 36 seconds (Table-3) while pentose sugar showed no values of APTT. Further studies are needed to refine the technique. Thus the present investigation revealed the fact that DNA could be considered as alternative thrombotic agent to heparin and various other anticoagulants used routinely in pathological labs.

References

