img1
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img2
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img3
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img4
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img5
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED/REFEREED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

previous arrow
next arrow

Plant growth promoting endophytic bacteria: Boon to agriculture

Verinder Wahla and Shruti Shukla

Department of Microbiology, Kanya Gurukul Campus, Gurukul Kangri University, Haridwar

Abstract

Endophytic bacteria are group of plant associated bacteria that infects different plant tissues without showing any visual symptoms. This has attracted a great interest of different researchers in the field of agriculture. Endophytes promote plant growth and yield, suppress pathogens, help phosphate solubilization and contribute nitrogen assimilation to plants. Some endophytes are seed borne, but others have mechanisms to colonize the plants. With the intention to provide studies on endophytic bacteria, this review focuses on the role of endophytes with respect to plant growth promotion, phytoremediation, bicontrol and their metabolic potential.

plant growth potential, phosphate solubilization, nitrogen assimilation, biocontrol, metabolic potential

Ashrafuzzaman M., Hossen F. A., Razi Ismail M., Hoque M.A., Zahurul Islam M., Shahidullah S.M and Meon S. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252,.

Barac T., Taghavi S., Borremans B., Provoost A., Oeyen L., Colpaert J. V., Vangronsveld J. and Van Der Lelie D. 2004. Engineered endophytic bacteria improve phyto-remediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22: 583–588.

Beneduzi A., Moreira F., Costa P. B., Vargas, L. K., Lisboa B. B., Favreto R., Baldani J. I. and Passaglia L. M. P. 2013. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl. Soil. Ecol. 6:94-104.

Berg G. and Hallmann J. 2006. Control of plant pathogenic fungi with bacterial endophytes. In: Microbial root endophytes. Schulz B, Boyle C, Sieber TN, eds. Springer, Berlin. Pp. 53–67.

Bhattacharjee R. B., Singh A. 2008. and Mukhopadhyay S. N. Use of nitrogen- fi xing bacteria as biofertilizer for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209. doi: 10.1007/ s00253-008-1567-2008).

Bhattacharya P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol.Biotechnol. 28:1327-135.

Catherine N. N., Viviene N. M., Akio T. And Catherine W. M. 2012. Isolation and identification of endophytic bacteria of bananas (Musa sp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr. J. Microbiol. Res. 6(34):6414-6422.

Chen Y. P., Rekha P. D., Arun A. B., Shen F. T., Lai W. A. and Young C. C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate -solubilizing abilities. Appl. Soil Ecol. 34 (1):33-41.

Chi F., Shen S. H. ,  Cheng H. P.,  Jing Y. X. ,  Yanni Y. G. and  Dazzo F. B. 2005.  Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology 71: 7271–7278.

Compant S., Duffy B., Nowak J., Clement C., Barka E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 71:4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005.

Deng Y, Zhu Y., Wang P., Zhu L., Zheng J., Li R., Ruan L., Peng D. and Sun M. 2011. Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the -plant pathogen Erwinia carotovora subsp. carotovora. J. Bacteriol, 193: 2070-2071.

Dobereiner J., Reis V. M., Paula M. A. And Olivares F. 1993. Endophytic diazotrophs in sugarcane cereals and tuber crops. In: Palacios R, Moor J, Newton WE (eds) New horizons in nitrogen fixation. Kluwer, Dordrecht, pp 671–674.

Fridlender M., Inbar J. and Chet I. 1993. Biological control of soilborne plant pathogens by a, b-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25, 1211–1221.

Germaine K., Keogh E. And Borremans B. 2004. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol  48: 109–118. 

Goldstein A. H. 1986. Bacterial solubilization of microbial phosphates: a historical perspective and future prospects. American Journal of Alternative Agriculture. 1: 51-57.

Hallmann J. and Berg G. 2006. Spectrum and population dynamics of bacterial root endophytes. In: Microbial root endophytes. Schulz B, Boyle C, Sieber T, eds. Springer, Heidelberg. Pp. 15–31.

Hallmann J., A. Q. Uadt-Hallmann, W. F. Mahaffee and J. W. K. 1997. Loepper Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology    43:  895 – 914.

Hardoim P. R.,  Van Overbeek L. S. and  Van Elsas J. D.  2008.Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16: 463–471. 

Hoflich G., Wiehe W., Hecht-Buchholz C. 1995. Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiol Res 150:139–147. doi: 10.1016/S0944-5013(11)80048-0.

Hung1 P. Q. and Annapurna K. 2004. Isolation and charecterization of endophytic bacteria in soybeam (Glycine Sp.) Omonrice, 12: 92- 10.

Hurek .T and Reinhold-Hurek B. 2003. Azoarcus sp. strain BH72 as a model for nitrogen- fi xing grass endophytes. J Biotechnol 106:169–178. doi: 10.1016 / j.jbiotec. 2003. 07. 010.

James E. K. And Olivares F. L.1998. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophsCritical Reviews in Plant Sciences17, 77–119.

Kevin V.J. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255: 571-586.

Khan A. A., Jilani G., Akhtar M. S., Naqvi S. M. S. and Rasheed M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric. Biol. Sci. 1:48-58.

Krause A., Ramakumar A., Bartels D., Battistoni F., Bekel T., Boch J. and Böhm M. 2006. Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotech. 24: 1385-1391.

Kumar V., Pathak D.V., Dudeja S.S., Saini R., Giri R., Narula S. and Anand R.C. 2013.Legume nodule endophytes more diverse than endophytesfrom roots of legumes or non legumes in soils of Haryana, India. J.Microbiol. Biotechnol. Res. 3 (3):83-92.

Li J., Zhao G. Z., Chen H. H., Qin S., Xu L. H. And Jiang C. L. 2008.  Rhodococcus cercidiphylli sp. nov., a new endophytic actinobacterium isolated from a Cercidiphyllum japonicum leaf. Syst Appl Microbiol. 2008;31:108–113. doi: 10.1016/j.syapm.

Li Y. H., Zhu J. N., Zhai Z.H. and  Zhang Q.A. 2010. Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol Lett 309:84-93.

Lugtenberg B. and Kamilova F. 2009. Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556. doi: 10.1146/annurev.micro.62.081307.162918.

Manter D. K., Delgado J., Holm D. G. and Stong R. 2010. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb. Ecol, 60: 157-166.

Matsuoka H., Akiyama M., Kobayashi K. and Yamaji K. 2013. Fe and P solubilisation under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast. Current Microbiology, 66(3) 314-32.

McCully M. E. 2001. Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust. J. Plant Physiol. 28:983–990.

Mengoni A., Pini F., Huang L. N., Shu W. S. and Bazzicalupo M. Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Alyssum bertolonii Desv. Microb. Ecol. 58: 660-667, (2009).

Mercado-Blanco J and Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek, 92: 367-89.

Mundt J. O. And Hinkle N. F. 1976. Bacteria within ovules and seeds. Appl. Environ. Microbiol. 32: 694–698.

Newman L. A., and Reynolds C. M. 2005. Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol. 23: 6–8; discussion 8–9.

Ordentlich A., Elad Y. and Chet L.  1988.The Role of Chitinase of Serratia marcescens in Biocontrol of Sclerotium rolfsii. Phytopathology, 78: 84-88.

Pedrosa F. O., Monteiro R. A., Wassem R., Cruz L. M., Ayub R. A., Colauto N. B., Fernandez M. A. 2011. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS genetics 7: e1002064.

Pleban S., Chernin L., Chet I. 1997. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett. Appl. Microbiol., 25: 284-288.

Reinhold-Hurek B., Hurek T. 2011. Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443. doi: 10.1016/j.pbi.2011.04.004.

Rodriguez H., Fraga R., Gonzalez T. and Bashan Y. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil , 287(1-2):15-21.

Rosenblueth M. and Martínez-Romero E. 2006. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions.19:827–837. 

Ruby E. J. and Raghunath T. M. A. 2011. Review: Bacterial endophytes and their bioprospecting. J Pharmacy Res 4: 795–799.

Ryan R. P., Monchy S., Cardinale M., Taghavi S., Crossman L., Avison M. B., Berg G., Van der Lelie D and Dow J. M. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7: 514-525. 

Ryu R. J. and Patten C. L. 2008.Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190: 7200–7208. 

Saini R.,  Dudeja S. S., Giri R. and Kumar V. 2015. Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. Journal of Basic Microbiology, 55 74-81.

Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B. 2012. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact, 25: 28-36.

Siciliano S., Fortin N. and Himoc N. 2001. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67: 2469–2475.

Sturz A. V., Christie B. R. and Nowak J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19: 1–30.

Taghavi S., Garafola C., Monchy S., Newman L., Hoffman A., Weyens N., Barac T., Vangronsveld J. and Van der Lelie D. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75: 748-757.

Taghavi S., Van der Lelie D., Hoffman A., Zhang Y. B., Walla M.D., Vangronsveld J., Newman L. and Monchy S.2010. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS genetics, 6: e1000943.

Tan R. X., and Zou W. X. 2001. Endophytes: a Rich Source of Functional Metabolites, Nat. Prod. Rep., 18, 448–459.

Van Aken B., Peres C., Doty S., Yoon J. and Schnoor J. 2004.  Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-ultilising bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Evol Microbiol 54: 1191–1196.

Van Loon L. C., Bakker P.A.  and Pieterse C. M. J. 1998. Systemic resistance induced by rhizosphere bacteria. Ann Rev Phyto 36: 453–483. 

Verma S. C., Singh A., Chowdhury S. P. and Tripathi A. K. 2004. Endophytic colonization ability of two deep-water rice endophytes, Pantoea spp. And Ochrobactrum spp. using green fluorescent protein reporter. Biotechnology Letters 26: 425–429. 

Webster G., Gough C., Vasse J., Bathchelor C. A., O’Callaghan K. J., Kothari S. L., Davey M. R, Denarie J. and Cocking E.C. 1997. Interactions of rhizobia with rice and wheat. Plant Soil 194:115–122. doi: 10.1023/A:1004283819084.

Weilharter A., Mitter B., Shin M. V., Chain P. S. G., Nowak J. and Sessitsch A. 2011. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J. Bacteriol. 193: 3383-3384.

Weyens N., Van der Lelie D., Taghavi S. And Vangronsveld J. 2009. Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol, 20: 248-54.

Zhang, H. W., Song Y.C. and Tan R.X. 2006. Biology and chemistry of endophytes. Nat. Pro. Rep., 23: 753-771.

Zhuang X., Chen J., Shim H. And Bai Z. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International 33:406-413.

Wahla, V., & Shukla, S. (2017). Plant growth promoting endophytic bacteria: Boon to agriculture. Environment Conservation Journal18(3), 107-114.

https://doi.org/10.36953/ECJ.2017.18314

Received: 07.05.2017

Revised: 12.06.2017 

Accepted: 16.08.2017

First Online: 21.12. 2017

:https://doi.org/10.36953/ECJ.2017.18314

MANUSCRIPT STATISTICS

Publisher Name:  Action for Sustainable Efficacious Development and Awareness (ASEA)

Print : 0972-3099           

Online :2278-5124