img1
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img2
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img3
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img4
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

img5
Environment
Conservation Journal

"An International Journal Devoted to Conservation of Environment"

(A PEER REVIEWED JOURNAL)

ISSN: 2278-5124 (Online) :: ISSN: 0972-3099 (Print)

previous arrow
next arrow

Bioactivity of Alcaligenes spp. isolated from cow dung against certain human pathogens

Gupta Kartikey Kumar , Rana Deepanshu

Department of Botany and Microbiology, Gurukula Kangri University, Haridwar-249404, India.

Abstract

Seven bacterial strains were isolated from cow dung, morphological and biochemical investigations identified, KD109 and KD110 as Alcaligenes fecalis and Alcaligenes Latus. These two isolates were screened for their antagonistic activity against 14 test organisms using cross-streak method. The preliminary screening revealed that isolate KD109 inhibit Vibrio cholerae (MTCC 3904), Salmonella typhi (MTCC 3216), Escherichia coli (SGPGI), Staphylococcus aureus (MTCC 7443), Bacillus subtilis (MTCC 441) and Bacillus cereus (MTCC 6728), while isolate KD110 inhibit Salmonella typhi (MTCC 3216), Escherichia coli and Bacillus cereus (MTCC 6728). This study indicates that these Alcaligenes spp. may be up-hold to industrial level for production of antimicrobial agent, which should be further analyzed for its possibility to be used as therapeutic agent.

Alcaligenes spp., Cow dung, Cross-streak method, Antimicrobial activity, Human Pathogens

Abbas, M.M. and Mahasneh, A.M., 2014. Isolation of Lactobacillus strains with probiotic potential from camels milk. African Journal of Microbiology Research, 8(15):1645-1655.

Abdulkadir, M. and Waliyu, S., 2012. Screening and isolation of the soil bacteria for ability to produce antibiotics. European Journal of Applied Sciences, 4(5):211-215.

Adeniyi, B.A., Adetoye, A. and Ayeni, F.A., 2015. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. African Health Sciences, 15(3):888-895.

Alteri, C.J., Smith, S.N. and Mobley, H.L., 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathogens, 5(5):1-13.

Al-Zereini, W.A., 2014. Bioactive crude extracts from four bacterial isolates of marine sediments from Red Sea, Gulf of Aqaba, Jordan. Jordan Journal of Biological Sciences, 7(2):133-137.

Asencio, G., Lavin, P., Alegría, K., Domínguez, M., Bello, H., González-Rocha, G. and González-Aravena, M., 2014. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp.: SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17(1):1-5.

Aymerich, T., Holo, H., Håvarstein, L.S., Hugas, M., Garriga, M. and Nes, I.F., 1996. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology, 62(5):1676-1682.

Bacic, M.K. and Yoch, D.C., University of South Carolina, 2001. Antibiotic composition from Alcaligenes species and method for making and using the same. U.S. Patent 6,224,863.

Beveridge, T.J., 2001. Use of the Gram stain in microbiology. Biotechnic & Histochemistry, 76(3):111-118.

Bhatta, D.R. and Kapadnis, B.P., 2010. Production optimization and characterization of bioactive compound against Salmonella from Bacillus subtilis KBB isolated from Nepal. Scientific World, 8(8):19-29.

Butler, M.S., Robertson, A.A. and Cooper, M.A., 2014. Natural product and natural product derived drugs in clinical trials. Natural Product Reports, 31(11):1612-1661.

Dandekar, T. and Dandekar, G., 2010. Pharmacogenomic strategies against microbial resistance: from bright to bleak to innovative. Pharmacogenomics, 11(9):1193-1196.

Das, M., 2011. Chitinase produced by Serratia marcescens SMG isolated from decomposed Volvariella volvacea. African Journal of Microbiology Research, 5(20):3220-3222.

Das, S., Ward, L.R. and Burke, C., 2010. Screening of marine Streptomyces spp. for potential use as probiotics in aquaculture. Aquaculture, 305(1-4):32-41.

Davies, J. and Davies, D., 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3):417-433.

Dhama, K., Chakraborty, S., and Tiwari, R., 2013. Panchgavya therapy (Cowpathy) in safeguarding health of animals and humans-a review. Research Opinions in Animal and Veterinary Sciences, 3(6):170-178.

Dhama, K., Rathore, R., Chauhan, R.S. and Tomar, S., 2005. Panchgavya (Cowpathy): an overview. International Journal of Cow Science, 1(1):1-15.

Donadio, S., Maffioli, S., Monciardini, P., Sosio, M. and Jabes, D., 2010. Antibiotic discovery in the twenty-first century: current trends and future perspectives. The Journal of Antibiotics, 63(8):423-430.

Dorothy, E.T., and Frisvad, J.C., 2002. Eupenicillium bovifimosum, a new species from dried cow manure in Wyoming. Mycologia, 94(2):240-246.

Eggleston, K., Zhang, R. and Zeckhauser, R.J., 2010. The global challenge of antimicrobial resistance: insights from economic analysis. International Journal of Environmental Research and Public Health, 7(8):3141-3149.

Esikova, T.Z., Temirov, Y.V., Sokolov, S.L. and Alakhov, Y.B., 2002. Secondary antimicrobial metabolites produced by thermophilic Bacillus spp. strains VK2 and VK21. Applied Biochemistry and Microbiology, 38(3):226-231.

Fischbach, M.A. and Walsh, C.T., 2009. Antibiotics for emerging pathogens. Science, 325(5944):1089-1093.

Gayen, J.R., Majee, S.B., Das, S., and Samanta, T.B., 2007. Antibacterial and toxicological evaluation of ß-lactams synthesized by immobilized ß-lactamase-free penicillin amidase produced by Alcaligenes sp. Indian Journal of Experimental Biology, 45(12):1068-1072.

Gebreyohannes, G., Moges, F., Sahile, S. and Raja, N., 2013. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Asian Pacific Journal of Tropical Biomedicine, 3(6):426-435.

Gupta, K.K., Aneja, K.R. and Rana, D., 2016. Current status of cow dung as a bioresource for sustainable development. Bioresources and Bioprocessing, 3(1):1-11.

Gupta, K.K., Rana, D., 2016a. Antimicrobial Activity of Certain Bacterial Isolates–A Screening Study. Biotechnology International, 9(3):55-59.

Gupta, K.K., Rana, D., 2016b. Isolation and evaluation of cow dung bacteria for their antimicrobial potential. Biotechnology International, 9(2):47-54.

Harvey, A.L., 2008. Natural products in drug discovery. Drug Discovery Today, 13(19-20):894-901.

Holt JG, Krieg NR, Sneath PHA, Stanley JT, Williams ST. 1994. Bergey’s Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins Press: USA;

Hsiao, A., Toy, T., Seo, H.J. and Marks, F., 2016. Interaction between Salmonella and Schistosomiasis: A Review. PLoS Pathogens, 12(12):1-12.

Ilic, S.B., Konstantinovic, S.S., Todorovic, Z.B., Lazic, M.L., Veljkovic, V.B., Jokovic, N. and Radovanovic, B.C., 2007. Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates. Microbiology, 76(4):421-428.

Isono, F., Takeuchi, M., Katayama, T., Seno, A., Shiozawa, H., Inukai, M., Ishii, A., Kodama, K., Haruyama, H., Watanabe, T. and Kinoshita, T., 1993. A new antibiotic, B-1015, produced by Alcaligenes faecalis. Annu Rep Sankyo Res Lab, 45:113-118.

Kamigiri, K., Suzuki, Y., Shibazaki, M., Morioka, M., Suzuki, K.I., Tokunaga, T., Setiawan, B. and Rantiatmodjo, R.M., 1996. Kalimantacins A, B and C, Novel Antibiotics from Alcaligenes sp. YL-02632S. The Journal of Antibiotics, 49(2):136-139.

Kapley, A., Tanksale, H., Sagarkar, S., Prasad, A.R., Kumar, R.A., Sharma, N., Qureshi, A. and Purohit, H.J., 2016. Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria. Functional & Integrative Genomics, 16(1):57-65.

Kleinkauf, H., and von Döhren, H., 1990. Review Nonribosomal biosynthesis of peptide antibiotics. In EJB Reviews, Springer, Berlin, Heidelberg:151-165.

Lauková, A., Czikková, S., Vasilková, Z., Juriš, P. and Mareková, M., 1998. Occurrence of bacteriocin production among environmental enterococci. Letters in Applied microbiology, 27(3):178-182.

Lehr, N.A., Meffert, A., Antelo, L., Sterner, O., Anke, H. and Weber, R.W., 2005. Antiamoebins myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbiology Ecology, 55(1):105-112.

Li, Z., Peng, C., Shen, Y., Miao, X., Zhang, H. and Lin, H., 2008. L, L-Diketopiperazines from Alcaligenes faecalis A72 associated with South China Sea sponge Stelletta tenuis. Biochemical Systematics and Ecology, 36(3):.230-234.

Li, Z.Y., Hu, Y., Huang, Y.Q. and Huang, Y., 2007. Isolation and phylogenetic analysis of the biologically active bacteria associated with three South China Sea sponges. Microbiology, 76(4):494-499.

Liaw, S.H., Chen, S.J., Ko, T.P., Hsu, C.S., Chen, C.J., Wang, A.H.J. and Tsai, Y.C., 2003. Crystal Structure of d-Aminoacylase from Alcaligenes faecalis DA1 a novel subset of amidohydrolases and insights into the enzyme mechanism. Journal of Biological Chemistry, 278(7):.4957-4962.

Maré, I.J. and Coetzee, J.N., 1964. Antibiotics of Alcaligenes faecalis. Nature, 203(4943):430-431.

Mohseni, M., Norouzi, H., Hamedi, J. and Roohi, A., 2013. Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. International Journal of Molecular and Cellular Medicine, 2(2):64-71.

Morgavi, D.P., Forano, E., Martin, C. and Newbold, C.J., 2010. Microbial ecosystem and methanogenesis in ruminants. Animal, 4(7):1024-1036.

Nene, Y.L., 1999. Seed health in ancient and medieval history and its relevance to present-day agriculture. Asian Agri-History (India).

Pelaez, F., 2006. The historical delivery of antibiotics from microbial natural products—can history repeat?. Biochemical Pharmacology, 71(7):981-990.

Puah, S.M., Chua, K.H. and Tan, J.A.M.A., 2016. Virulence factors and antibiotic susceptibility of Staphylococcus aureus isolates in ready-to-eat foods: detection of S. aureus contamination and a high prevalence of virulence genes. International Journal of Environmental Research and Public Health, 13(2):199.

Randhawa, G.K. and Kullar, J.S., 2011. Bioremediation of pharmaceuticals, pesticides, and petrochemicals with gomeya/cow dung. ISRN pharmacology, 2011: 1-7.

Shrivastava, S. and Pal, A.M.A., 2014. Cow Dung-A Boon for Antimicrobial Activity. Life Sciences Leaflets, 55(2014):60-63

Teo, K.C. and Teoh, S.M., 2011. Preliminary biological screening of microbes isolated from cow dung in Kampar. African Journal of Biotechnology, 10(9), pp.1640-1645.

Tripathi, C.K.M., Bihari, V. and Tyagi, R.D., 2000. Microbial production of D-amino acids. Process Biochemistry, 35(10):1247-1251.

Uppal, B., Mehra, B., Panda, P.S. and Kumar, S.K., 2017. Antimicrobial susceptibility profile of Vibrio cholerae strains isolated at a tertiary care medical centre in New Delhi, India. International Journal Of Community Medicine And Public Health, 4(3):868-871.

Wang, G.X., Li, F.Y., Cui, J., Wang, Y., Liu, Y.T., Han, J. and Lei, Y., 2011. Immunostimulatory Activities of a Decapeptide Derived from Alcaligenes faecalis FY-3 to Crucian Carp. Scandinavian Journal of Immunology, 74(1):14-22.

Waziri, M. and Suleiman, J.S., 2012. Physicochemical properties and antimicrobial activity of evaporated extract of cow dung against some pathogens. Journal of Scientific Research, 5(1):135-141.

Zahir, I., Houari, A., Bahafid, W., Iraqui, M. and Ibnsouda, S., 2013. A novel Alcaligenes faecalis antibacterial-producing strain isolated from a Moroccan tannery waste. African Journal of Microbiology Research, 7(47):5314

Kumar, G. K., & Deepanshu, R. (2018). Bioactivity of Alcaligenes spp. isolated from cow dung against certain human pathogens. Environment Conservation Journal19(1&2), 59-64.

:https://doi.org/10.36953/ECJ.2018.191207

Received: 20.10.2017

Revised: 28.12.2017

Accepted: 14.03.2018

First Online: 20.06. 2018

:https://doi.org/10.36953/ECJ.2018.191207

MANUSCRIPT STATISTICS

Publisher Name:  Action for Sustainable Efficacious Development and Awareness (ASEA)

Print : 0972-3099           

Online :2278-5124